C++ OPERATORS

r

C++ OPERATORS

1

Operator Type
Unary operator ++, -- Unary operator
+ - * / % Arithmetic operator
-:r --:::r _‘:-_' ::-:i ==, = Relational operator
Binary operator &, I ‘: | Logical operator

Ternary operator - : Ternary or
I ry op 2 conditional operator ‘

&I' |J ‘i{r }:}! = kS

Bitwise operator

= +=, -=, *:i f:r 0p=

Assignment operator

Increment and Decrement Operators

 C++ also provides increment and decrement
operators: ++ and -- respectively.

* ++ increases the value of the operand by 1,
 while -- decreases it by 1.

++ and --

num-++ is equivalent to num=num+1;
num -- is equivalent to num=num-1;

__increment and decrement operators

* Increment (++) and Decrement (- -)

* Pre Incrementis ++Xx

e (The value is incremented first and then applied)
 Post Incrementis x++

* (First Value is Applied and then value is incremented)
* Pre Decrement - -x

* (The value is decremented first and then applied)

* Post Decrement x- -
e (First value is applied and then value is decremented)

increment and decrement operators

main()

{
inta=10,b =100;
cout <<"++a = “<<++a << endl;

cout <<"++b = “<<++b << end|l;
cout <<"a-- = “<<a-- << endl;
cout <<“--b = “<<--b << end|;

}

C++ Arithmetic Operators

* C++ Arithmetic Operators

Operator Operation

Addition

Subtraction

Multiplication

Division

CRSHENOND

Modulo Operation (Remainder after division)

#include <iostream.h> Arithmetic Operators

#include <conio.h>

void main()
{
inta=7,b=2;

cout<<"a+b="<<(a+b)<<endl
cout<<"a-b="<<(a-b)<<endl

%L . Output
cout<<"a*b="<<(a*b)<<endl 3+b=9
cout<<"a/b="<<(a/b)<<endl a-b=5
cout<<"a% b="<<(a%b)<<endl a*b=14
) a/b=3

a%b=1

2’0“ main() SIMPLE INTEREST

double p,r,si,t;

cout<<"enter the value of principal,rate and time" <<end|;
cin>>p>>r>>t;

si=(p*r*t)/100;

cout<<"Amount = Rs."<<p<<end|;

cout<<"Rate = Rs."<<r<<endl;

cout<<"Time = year"<<t<<endl;

cout<<"Simple interest ="<<si<<end];

getch();

}

C++ Assignment Operators

Operator Example Equivalent to
[= | | a = & =By]

[E | a += |la = a + b
[=] (A= (AEe - b
[E | & *= la = a=* b
[El | a F= la = a 75 b
[%= | [a %~ ([a = a % b

Example of Assighment Operators

main()

{ cout<<"*= Qutput: "<<a;

inta=10;int b = 20; a/=b;

b = a; cout<<"/= Output: "<<a;

cout<<” = OQutput: "<<b; a %= b:

a+=b; cout<<"%= Output: "<<a;
cout<<"+= Output: "<<a; }

a-=b;

cout<<"-= Qutput: "<<a;
a *=b;

C++ Relational Operators

C++ Relational Operators

Operator Meaning Example

(—_ Is Equal To | 3 == 5 |gives us false
[1= Not Equal To | 3 1= 5 |gives us true
(=] Greater Than | 3 = 5 | gives us false
|E| Less Than | 3 < 5 | gives us true
[>= Greater Than or Equal To | 3 == 5 |give us false
| == Less Than or Equal To | 3 <= 5 |gives us true

// C++ program demonstrating ! operator truth table

void main()

{
inta=>5;
cout << (a == 0) << end|;
cout << (a ==5) << endl;

}

Void main() Example : Relational Operators
{

int a=3, b=5;

cout << (a == b)<<end];

cout << (al= b)<<endi;

cout << (a > b)<<end];

cout << (a < b)<<end];

cout << (a >= b)<<end|;

cout << (a <= b)<<endl;

}

C++ Logical Operators

C++ Logical Operators

* Logical operators are used to check whether an
expression is true or false.

* |f the expression is true, it returns 1 whereas

Operator Example Meaning

Logical AND.

B8 expression] && expression?2 _
[= s True only if all the operands are true.

AT ionl I s Logical OR.
expressionl || expression : _
e = = True if at least one of the operands is true.

T e Logical NOT.
) it True only if the operand is false.

// C++ program demonstrating | | operator truth table

Relational Operators

#tinclude <iostream>

void main()

{

inta=5,b=09;

cout<<((a==0) || (a>b)) << endl;
cout<< ((a==0) || (a<b)) << endl;
cout<<((a==5) || (a>b)) << endl;
cout<< ((a==75) || (a<b))<<endl;
cout << ((a == 0) && (a > b)) << end];
cout << ((a == 0) && (a < b)) << end];
cout << ((a ==5) && (a > b)) << end];
cout << ((a ==5) && (a < b)) << end];

}

Bitwise Operators

C++ Bitwise Operators

* |[n C++, bitwise operators are used to perform
operations on individual bits.

* They can only be used char and int data types.

Operator

Description

& | Binary AND

[I| Binary OR

[~] Binary XOR

[~ | Binary One's Complement
[<< | Binary Shift Left

[=> | Binary Shift Right

mple - Bitwise AND operator
#include <iostream>

void main()
{
inta=5,b=09;

cout << "a="<<a<<endl;

cout << "b="<< b << endl;

cout<<"a & b="<<(a&b)<<endl; Output

getch(); a=>5

} b=9
a&b=1

Example - Bitwise OR operator

#include <iostream>
Void main()

{

inta=5,b=09;

cout<<"a="<<a<<endl
cout<<"b="<< b << endl;
cout<<"a| b="<<(a| b)<<endl
cout<<"a &b ="<<(a&b)<<endl

}

Output
a=>5
b=9
a|b=13
a&b=1

Example - Bitwise XOR operator
#include <iostream>

void main()
{
inta=5,b=09;

cout << "a="<<a<<endl;

cout << "b="<< b << endl; Output

cout<<"arb="<<(aNb)<<endlja=5

1 b=9
arb=12

Example Bitwise Complement operator
#include <iostream>

main()

{

int num1 = 35;
int num2 =-150;

cout << "¥(" << numl <<") =" << (*numl) <<
endl;

cout << "~(" << num2 << ") =" << (*nun?
endl;

}

Output
~(35) =
"’(-150) = 149

C++ Shift Operators ‘

There are two shift operators in C++
programming:

* Right shift operator >>
e Left shift operator <<

C++ Right Shift Operator

* The right shift operator shifts all bits towards the
right by a certain number of specified bits. It is
denoted by >>.

* When we shift any number to the right, the least
significant bits are discarded, while the most
significant bits are replaced by zeroes.

ofof:

e NN\
B oon

one bit Right Shift

Discarded

C++ Left Shift Operator

* The left shift operator shifts all bits
towards the left by a certain number
of specified bits. It is denoted by <<.

(1 Jofl1Qo

T

oncwaea-—— () [B3 BB

one bit Left Shift

void main() C++ Shift Operators
{
inta=5,b=09;
cout<<"a="<<a<<","<<" b =" << b <<endl;
cout<<"a & b ="<<(a &b)<<endl;
cout<<"a | b="<<(a | b)<<endl
cout<<"arb="<<(aNb)<<endl
cout << "~(" <<a<<")="<< (~a) << endl;
cout<<"b << 1" <<" ="<< (b << 1) <<endl;
cout<<"b >>1"<<"="<< (b >>1)<<endl;

}

void main() C++ Shift Operators

{
inta=5,b=09;
COUt<<"a u]| << a <<Il’ll<<] b=]| << b<<end|;
cout<<"b << 1" <<" ="<< (b << 1) <<endl;

cout<<"b >>1 "<<"="<< (b >> 1)<<endl;

}

Ternary operator

Conditional or Ternary Operator (?2:) in C/C++

Syntax
condition ? value if true:value if false

Resultant VValue

| e |

variable = Expression1 ? Expression2 : Expression3

y \ i

Resultant Value

Program to Find Largest Among Two Numbers Using Ternary Operator

void main()

{

inta=5,b=10,c;

c=(a>b)?a:b;

cout<<"Largest number between "<<a << “ & "<< b <<”is “ << ;

}

C++ COMMENTS

 C++ comments are hints that a programmer
can add to make their code easier to read and
understand. They are completely ighored by
C++ compilers.

There are two ways to add comments
to code:

* //-Single Line Comments

* /**/-Multi-line Comments

* Why use Comments?

* |If we write comments on our code, it will be easier
for us to understand the code in the future. Also, it
will be easier for your fellow developers to
understand the code.

* Note: Comments shouldn't be the substitute for a
way to explain poorly written code in English. We
should always write well-structured and self-
explanatory code. And, then use comments.

The sizeof() operator

i

sizeof() call to display the size (in bytes) of the
standard C data types (char,int, long...)

sizeof (char) =1
sizeof (int) =2
sizeof (float) =4
sizeof (double) =8

sizeof (long long) =8

H#Hinclude<iostream.h>

#include<conio.h>
void main()

{

int a; double c; char d;
cout<<"Size of int ="<<sizeof(a)<<"bytes\n";
cout<<"Size of double="<<sizeof(c)<<"bytes\n";
cout<<"Size of char="<<sizeof(d)<<"bytes\n";
getch();

}

#‘“C:“:““Stre:’“'b Conversion of Temperature
#include<conio.h> . -
from Celsius degree into

void main()
{

double ¢,f;
cout<<"Enter temperature in degree:";

cin>>c;

f=(1.8*c)+32;

cout<<"Temperature in degree Fahrenhieit:"<<f;
getch();

}

THANKS

