

C++ OPERATORS

• C++ also provides increment and decrement
operators: ++ and -- respectively.

• ++ increases the value of the operand by 1,
• while -- decreases it by 1.

++ and --++ and --
num++ is equivalent to num=num+1;
num -- is equivalent to num=num-1;

• Increment (++) and Decrement (- -)
• Pre Increment is ++x

increment and decrement operators

• Pre Increment is ++x
• (The value is incremented first and then applied)
• Post Increment is x++
• (First Value is Applied and then value is incremented)
• Pre Decrement - -x• Pre Decrement - -x
• (The value is decremented first and then applied)
• Post Decrement x- -
• (First value is applied and then value is decremented)

main()
{
int a = 10, b = 100; int a = 10, b = 100;
cout <<"++a = “<<++a << endl;
cout <<"++b = “<<++b << endl;
cout <<"a-- = “<<a-- << endl; cout <<"a-- = “<<a-- << endl;
cout <<“--b = “<<--b << endl;
}

• C++ Arithmetic Operators

#include <iostream.h>
#include <conio.h>
void main()
{

Arithmetic Operators

{
int a = 7, b = 2;
cout << "a + b = " << (a + b) << endl;
cout << "a - b = " << (a - b) << endl;
cout << "a * b = " << (a * b) << endl;

Output
a + b = 9 cout << "a * b = " << (a * b) << endl;

cout << "a / b = " << (a / b) << endl;
cout << "a % b = " << (a % b) << endl;
}

a + b = 9
a - b = 5
a * b = 14
a / b = 3
a % b = 1

void main()
{
double p,r,si,t;
cout<<"enter the value of principal,rate and time" <<endl;
cin>>p>>r>>t;

SIMPLE INTEREST

cin>>p>>r>>t;
si=(p*r*t)/100;
cout<<"Amount = Rs."<<p<<endl;
cout<<"Rate = Rs."<<r<<endl;
cout<<"Time = year"<<t<<endl;cout<<"Time = year"<<t<<endl;
cout<<"Simple interest ="<<si<<endl;
getch();
}

main()
{
int a = 10; int b = 20;

cout<<"*= Output: "<<a;
a /= b;

Example of Assignment Operators

int a = 10; int b = 20;
b = a;
cout<<“ = Output: "<<b;
a += b;
cout<<"+= Output: "<<a;

a /= b;
cout<<"/= Output: "<<a;
a %= b;
cout<<"%= Output: "<<a;
}cout<<"+= Output: "<<a;

a -= b;
cout<<"-= Output: "<<a;
a *= b;

}

Relational Relational

C++ Relational Operators

// C++ program demonstrating ! operator truth table
void main()
{

int a = 5;
cout << (a == 0) << endl;
cout << (a == 5) << endl;cout << (a == 5) << endl;
}

Void main()
{
int a=3, b=5;
cout << (a == b)<<endl;

Example : Relational Operators

cout << (a == b)<<endl;
cout << (a!= b)<<endl;
cout << (a > b)<<endl;
cout << (a < b)<<endl;
cout << (a >= b)<<endl; cout << (a >= b)<<endl;
cout << (a <= b)<<endl;
}

C++ Logical Operators

• Logical operators are used to check whether an
expression is true or false.

• If the expression is true, it returns 1 whereas

C++ Logical Operators

• If the expression is true, it returns 1 whereas
• if the expression is false, it returns 0.

// C++ program demonstrating || operator truth table
#include <iostream>
void main()
{
int a = 5, b = 9;

Relational Operators

int a = 5, b = 9;
cout << ((a == 0) || (a > b)) << endl;
cout << ((a == 0) || (a < b)) << endl;
cout << ((a == 5) || (a > b)) << endl;
cout << ((a == 5) || (a < b)) << endl;
cout << ((a == 0) && (a > b)) << endl; cout << ((a == 0) && (a > b)) << endl;
cout << ((a == 0) && (a < b)) << endl;
cout << ((a == 5) && (a > b)) << endl;
cout << ((a == 5) && (a < b)) << endl;
}

C++ C++
Bitwise Operators

• In C++, bitwise operators are used to perform
operations on individual bits.

C++ Bitwise Operators

operations on individual bits.
• They can only be used char and int data types.

#include <iostream>
void main()
{ {
int a = 5, b = 9;
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "a & b = " << (a & b) << endl; Outputcout << "a & b = " << (a & b) << endl;
getch();
}

Output
a = 5
b = 9
a & b = 1

#include <iostream>
Void main()
{ {
int a = 5, b = 9;
cout << "a = " << a << endl;
cout << "b = " << b << endl; Output

a = 5
cout << "b = " << b << endl;
cout << "a | b = " << (a | b) << endl;
cout << "a & b = " << (a & b) << endl;
}

a = 5
b = 9
a | b = 13
a & b = 1

#include <iostream>
void main()
{ {
int a = 5, b = 9;
cout << "a = " << a << endl;
cout << "b = " << b << endl; Outputcout << "b = " << b << endl;
cout << "a ^ b = " << (a ^ b) << endl;
}

Output
a = 5
b = 9
a ^ b = 12

#include <iostream>
main()
{

ComplementComplement

{
int num1 = 35;
int num2 = -150;
cout << "~(" << num1 << ") = " << (~num1) <<

endl; endl;
cout << "~(" << num2 << ") = " << (~num2) <<

endl;
}

Output
~(35) = -36
~(-150) = 149

There are two shift operators in C++
programming:

C++ Shift OperatorsC++ Shift Operators

• Right shift operator >>
• Left shift operator <<

C++ Right Shift Operator
• The right shift operator shifts all bits towards the

right by a certain number of specified bits. It is
denoted by >>.denoted by >>.

• When we shift any number to the right, the least
significant bits are discarded, while the most
significant bits are replaced by zeroes.

C++ Left Shift Operator
• The left shift operator shifts all bits

towards the left by a certain number towards the left by a certain number
of specified bits. It is denoted by <<.

void main()
{

int a = 5, b = 9;
cout<<"a = " << a <<","<< " b = " << b <<endl;

C++ Shift OperatorsC++ Shift Operators

cout<<"a = " << a <<","<< " b = " << b <<endl;
cout << "a & b = " << (a & b) << endl;
cout << "a | b = " << (a | b) << endl;
cout << "a ^ b = " << (a ^ b) << endl;
cout << "~(" << a << ") = " << (~a) << endl;cout << "~(" << a << ") = " << (~a) << endl;
cout<<"b << 1" <<" = "<< (b << 1) <<endl;
cout<<"b >> 1 "<<"= " << (b >> 1)<<endl;
}

void main()
{

int a = 5, b = 9;
cout<<"a = " << a <<","<< " b = " << b <<endl;

C++ Shift OperatorsC++ Shift Operators

cout<<"a = " << a <<","<< " b = " << b <<endl;
cout<<"b << 1" <<" = "<< (b << 1) <<endl;
cout<<"b >> 1 "<<"= " << (b >> 1)<<endl;
}

Ternary operator

Syntax
condition ? value_if_true : value_if_false

void main()
{
int a = 5, b = 10, c;

Program to Find Largest Among Two Numbers Using Ternary Operator

int a = 5, b = 10, c;
c = (a > b) ? a : b;
cout<<"Largest number between ”<<a << “ & ”<< b <<“is “ << c;
}

• C++ comments are hints that a programmer
can add to make their code easier to read and
understand. They are completely ignored by

C++ Comments

understand. They are completely ignored by
C++ compilers.

There are two ways to add comments
to code:to code:

• // - Single Line Comments
• /* */ -Multi-line Comments

• Why use Comments?
• If we write comments on our code, it will be easier

for us to understand the code in the future. Also, it
will be easier for your fellow developers to will be easier for your fellow developers to
understand the code.

• Note: Comments shouldn't be the substitute for a
way to explain poorly written code in English. We
should always write well-structured and self-should always write well-structured and self-
explanatory code. And, then use comments.

Sizeof ()
sizeof() call to display the size (in bytes) of the
standard C data types (char,int, long…)

sizeof (char) =1sizeof (char) =1
sizeof (int) =2
sizeof (float) =4
sizeof (double) =8sizeof (double) =8
sizeof (long long) =8

#include<iostream.h>
#include<conio.h>
void main()
{

sizeof()

{
int a; double c; char d;
cout<<"Size of int ="<<sizeof(a)<<"bytes\n";
cout<<"Size of double="<<sizeof(c)<<"bytes\n";cout<<"Size of double="<<sizeof(c)<<"bytes\n";
cout<<"Size of char="<<sizeof(d)<<"bytes\n";
getch();
}

#include<iostream.h>
#include<conio.h>
void main()
{

Conversion of Temperature
from Celsius degree into

Fahrenheit{
double c,f;
cout<<"Enter temperature in degree:";
cin>>c;
f=(1.8*c)+32;

Fahrenheit

f=(1.8*c)+32;
cout<<"Temperature in degree Fahrenhieit:"<<f;
getch();
}

